ANTI-MONEY LAUNDERING IN BITCOIN USING MACHINE LEARNING

*Amala Peter, *Karthika P V, *Maya Manohar K, *Parvathi Sankar, **Anuraj Mohan *UG Scholar, **Assistant Professor, Department of Computer Science and Engineering NSS College of Engineering, Palakkad

Anti-Money Laundering in Bitcoin

- Existing systems prove inefficient in tackling the issue of money laundering in Bitcoin.
- The pseudonymity of Bitcoin is an advantage for criminals but the public availability of data is a key advantage for the investigators.

Objective

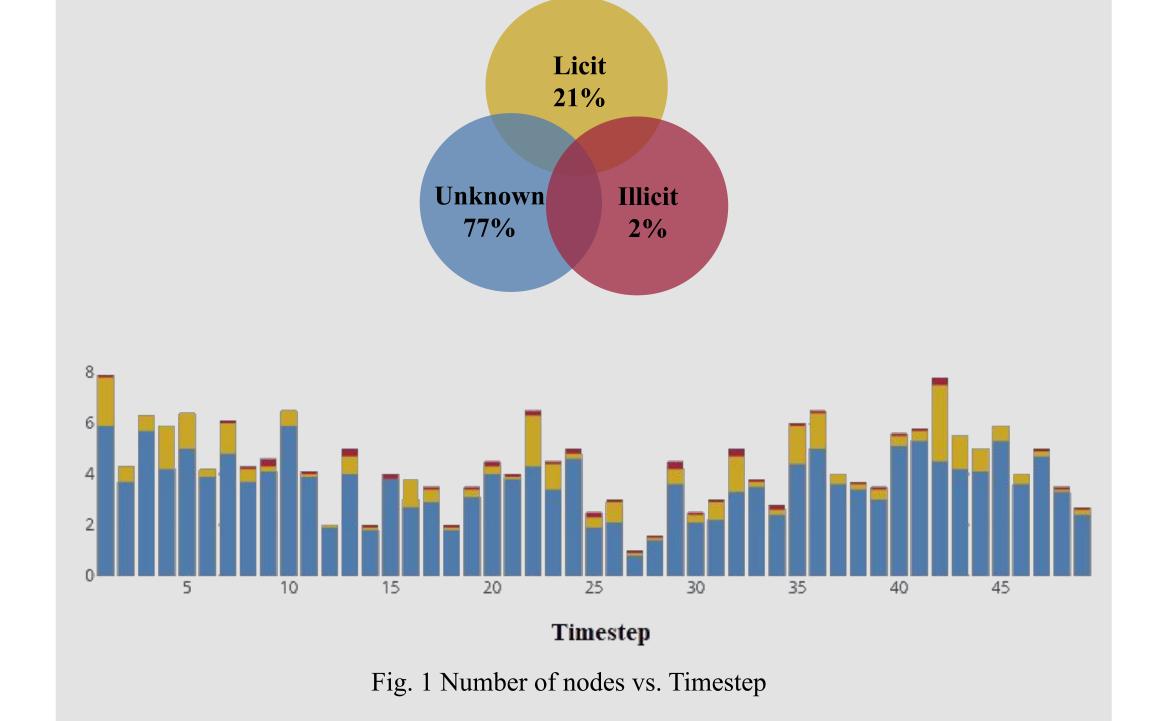
- Our work aims to exploit the publicly available data to develop useful insights that might help in curbing illegal activities.
- In this work, we experiment with various emerging methods that leverage graph information to model the problem and combine the potentialities of these methods to build a better performing system.
- We also aim to further improve our system using Knowledge Distillation (KD)

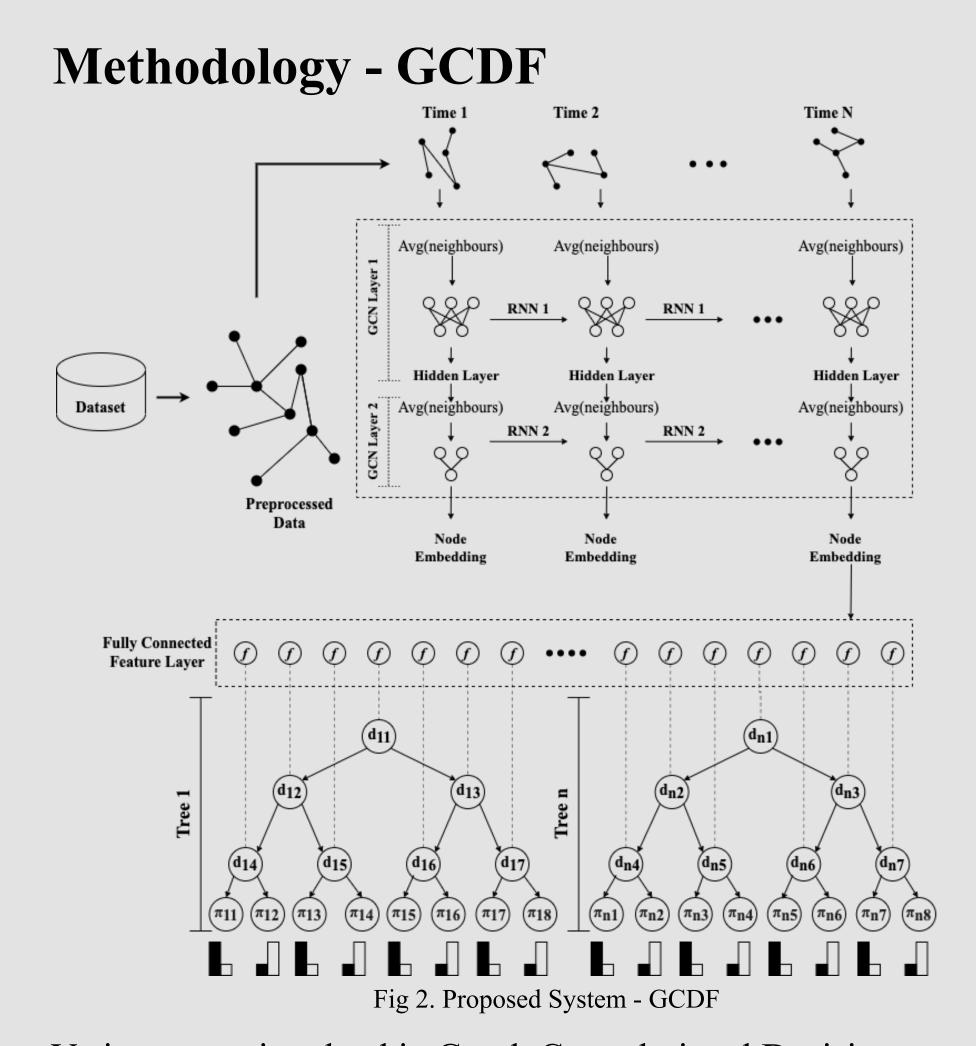
Problem Statement

To design an efficient system to classify the unknown transactions as licit or illicit in the Elliptic dataset to tackle the issue of money laundering in Bitcoin.

Elliptic Dataset

- 2,03,769 transactions/graph nodes and 2,34,355 edges representing the Bitcoin flow.
- 94 local features and 72 aggregate features.





Various steps involved in Graph Convolutional Decision Forest (GCDF):

- Pre-process the dataset
- Feed each timestep to EvolveGCN module
- Feed the node embeddings obtained from EvolveGCN to Deep Neural Decision Forest (DNDF) Module
- Obtain the final prediction

Fine Tuning using KD Teacher Model Training Data Softmax (T=t) **Ground Truth** Fig 3. Fine tuning using KD Various steps involved in fine tuning: • Train GCDF as the teacher model and obtain the distillation loss • Train GCN as the student model using the distillation loss • Obtain final predictions from the student model

Evaluation Measures

- Python
- NumPy

Tools

• Sklearn PyTorch

- Precision
- Recall
- F1-Score Micro Average F1-Score

Results

Dowformanaa Comparison		Miano Ava E1		
Performance Comparison	Precision	Recall	F 1	Micro Avg F1
Logistic Regression (AF + NE)	0.457	0.651	0.537	0.9297
Random Forest (AF + NE)	0.984	0.647	0.781	0.9772
MLP(AF + NE)	0.784	0.542	0.641	0.9619
Graph Convolutional Network	0.8674	0.4774	0.6158	0.9613
GraphSAGE	0.8534	0.8385	0.8939	0.8278
EvolveGCN	0.998	0.8663	0.9249	0.8663
GCDF	0.9953	0.8663	0.9251	0.8663

Table. 1 GCDF vs. Other Methods; AF – All Features, NE – Node Embeddings

Mathada		Miono ova E1		
Methods	F1 score	Precision	Recall	Micro-avg F1
GCDF (Without KD)	0.9251	0.9953	0.8663	0.8663
GCDF (With KD) - T	0.9251	0.9953	0.8663	0.8663
GCDF (With KD) - S	0.9525	0.9936	0.9166	0.9191

Table. 2 Effect of KD on GCDF

	Teacher				Student			
Methods	F1 Score	Precision	Recall	Micro-av g F1	F1 Score	Precisi on	Recall	Micro-a vg F1
GCN	0.444	0.305	0.406	0.9946	0.8175	0.7828	0.8751	0.708
EvolveGCN	0.9251	0.9931	0.8663	0.8663	0.9252	0.9999	0.8666	0.8666
GCDF	0.9251	0.9953	0.8663	0.8663	0.9525	0.9936	0.9166	0.9191

Table. 3 Other Methods in KD

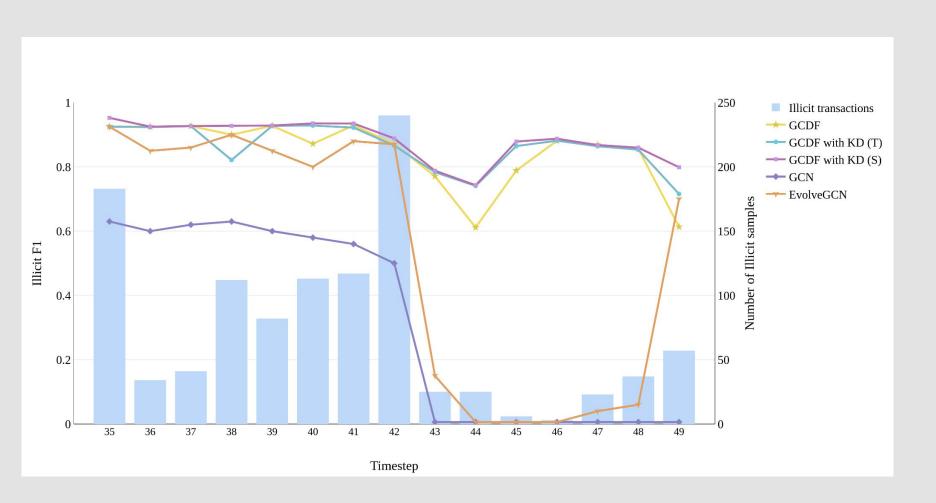
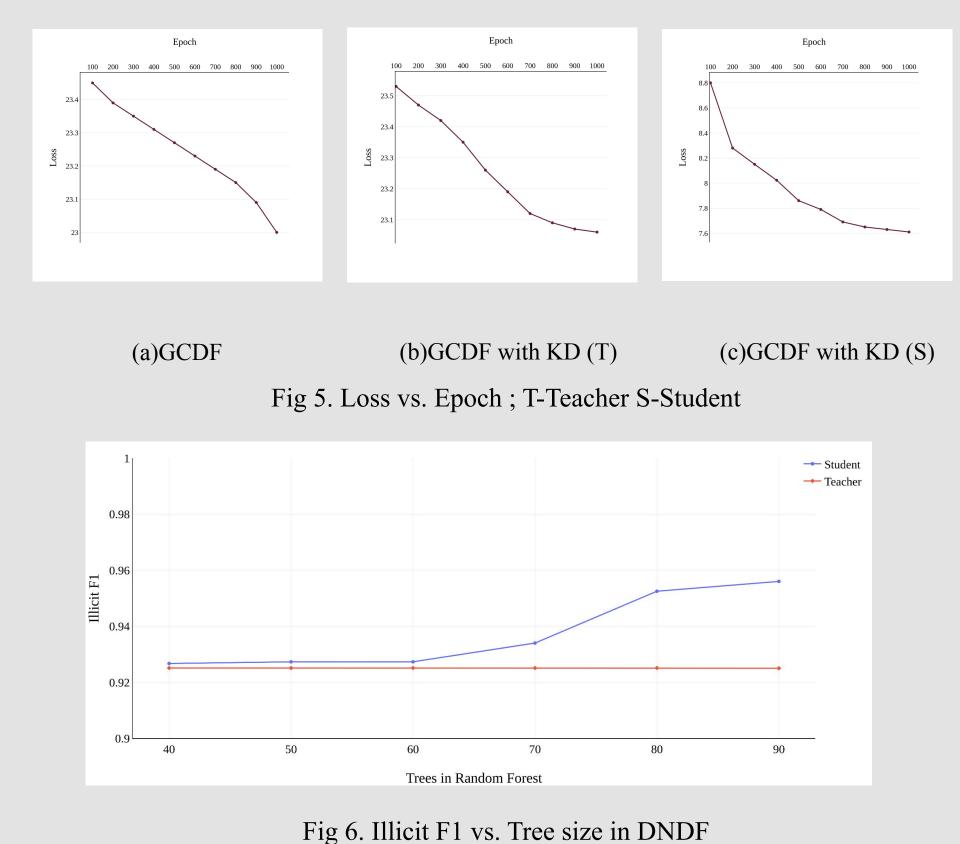


Fig 4. Illicit F1 results over timespan



Inferences

- GCDF performs best with a 70:30 temporal split of training and test data respectively.
- 80 trees of depth 8 each in DNDF was able to give satisfactory results both in terms of performance and execution time.
- Loss incurred while training student convincingly reduced with the introduction of KD
- There was an observable performance boost in the student model as compared to the teacher model.

Conclusion

- Out of the benchmark methods, Random Forest gives the best result. But this does not incorporate any graph information.
- The importance of utilising a concatenation between dynamic graph learning and ensemble feature learning is demonstrated in this work.
- The results show the superiority of the proposed model to classify the illicit transactions in the Elliptic dataset.
- Additionally, the application of KD gave finer results

Future Works

- Elliptic dataset has the main limitation of having a new node set for each new graph snapshot; this needs to be addressed while considering a dynamic setting.
- Capturing the temporal dynamics by modelling the data as a time-varying graph and using it for detecting illicit activities can be another interesting future work.

References

[1] Weber, M., Domeniconi, G., Chen, J., Weidele, D.K.I., Bellei, C., Robinson, T. and Leiserson, C.E., (2019), "Anti-money laundering in bitcoin: Experimenting with graph convolutional financial forensics". arXiv preprint networks arXiv:1908.02591.

[2] Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., Kaler, T., Schardl, T. and Leiserson, C. (2020), "Evolvegen: Evolving graph convolutional networks for dynamic graphs", Proceeding of the AAAI Conference on Artificial Intelligence, Vol. 34 No. 04, pp. 5363-5370.

[3] Kontschieder, P., Fiterau, M., Criminisi, A. and Bulo, S.R., 2015. Deep neural decision forests. In Proceedings of the IEEE international conference on computer vision (pp. 1467-1475).

[4] Yang, Y., Qiu, J., Song, M., Tao, D. and Wang, X., 2020. Distilling knowledge from graph convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7074-7083).